Miller Group

Publications




Papers

41. Glycosaminoglycans from Litopenaeus vannamei inhibit the Alzheimer’s disease β-secretase, BACE1
C. J. Mycroft-West, A. J. Devlin, L. C. Cooper, S. E. Guimond, P. Procter, G. J. Miller, M. Guerrini, D. G. Fernig, E. A. Yates, M. A. Lima and M. A. Skidmore,
Marine Drugs, 2021, 19, 203.
Part of a special issue:
Anti-Alzheimer Agents from Marine Sources

marinedrugs-19-00203-ag-550

40. Targeted chemoenzymatic synthesis of sugar nucleotide probes reveal an inhibitor of the GDP-D-mannose dehydrogenase from Pseudomonas aeruginosa
L. Beswick, E. Dimitriou, S. Ahmadipour, A. Zafar, M. Rejzek, J. Reynisson, R. A. Field and G. J. Miller,
ACS Chem Biol., 2020, 15, 3086-92.

GA

39. Heparin inhibits cellular invasion by SARS-CoV-2: structural dependence of the interaction of the Spike S1 receptor binding domain with heparin
C. J. Mycroft-West, D. Su, I. Pagani, T. R. Rudd, S. Elli, S. E. Guimond, G. J. Miller, M. C. Z. Meneghetti, H. B. Nader, Y. Li, Q. M. Nunes, P. Procter, N. Mancini, M. Clementi, N. R. Forsyth, J. E. Turnbull, M. Guerrini, D. G. Fernig, E. Vicenzi, E. A. Yates, M. A. Lima and M. A. Skidmore, Thromb. Haemost. 2020, 120, 1700-15.

Screenshot 2021-01-03 at 14.20.57

38. Illuminating glycoscience: Synthetic strategies for FRET-enabled carbohydrate active enzyme probes
M. Singh, M. Watkinson, E. M. Scanlan and G. J. Miller,
RSC Chem. Biol., 2020, 1, 352-68.
Screenshot 2020-07-24 at 11.42.36

37. Unifying the synthesis of nucleoside analogs
G. J. Miller,
Science, 2020, 369, 623.
Screenshot 2020-08-11 at 07.57.25

36. Chemical synthesis of a sulfated D-glucosamine library and evaluation of cell proliferation capabilities
A. Ní Cheallaigh, S. E.Guimond, S. Oscarson and G. J. Miller,
Carbohydr. Res., 2020, 495, 108085.
Screenshot 2020-07-29 at 14.52.23

35. Recent advances in the chemical synthesis and evaluation of anticancer nucleoside analogues
M. Guinan, C. Benckendorff, M. Smith and G. J. Miller, Molecules, 2020, 25, 2050.
molecules-25-02050-ag-550
Part of a Special Issue - Advances in Anticancer Drug Discovery

34. Synthesis and isolation of diastereomeric anomeric sulfoxides from a D-mannuronate thioglycoside building block
E. Dimitriou and G. J. Miller.
Molbank, 2020, 2020, M1111.
Part of a Special Issue -
Molecules from Side Reactions

33.
Exploring anomeric glycosylation of phosphoric acid: optimisation and scope for non-native substrates
L. Beswick, S. Ahmadipour, G.-J. Hofman, H. Wootton, E. Dimitriou, J. Reynisson, R. A. Field, B. Linclau and G. J. Miller.
Carbohydr. Res., 2020, 488, 107896.

32. Inhibition of BACE1, the β-secretase implicated in Alzheimer’s Disease, by a chondroitin sulfate extract from Sardina pilchardus
C. J. Mycroft-West, A. J. Devlin, C. L. Cooper, P. Procter, G. J. Miller, D. G. Fernig, M. Guerrini, S. E. Guimond, M. A. de Lima, E. A. Yates and M. Skidmore, Neur. Regen. Res., 2020, 15, 1546-1553.

31.
Exploring a glycosylation methodology for the synthesis of hydroxamate-modified alginate building blocks
E. Dimitriou and G. J. Miller,
Org. Biomol. Chem, 2019,17, 9321-9335.
Part of a web-themed special issue -
Glycosylation: New methodologies and applications

30.
Chemical and enzymatic synthesis of the alginate sugar nucleotide building block: GDP mannuronic acid
L. Beswick, S. Ahmadipour, J. P. Dolan,, M. Rejzek, R. A. Field and G. J. Miller, 
Carbohydr. Res., 2019, 485, 107819.

29.
6R/S-deutero-α-D-mannopyranoside 1-phosphate 
S. Ahmadipour and G. J. Miller, 
Molbank, 20192019, M1068.
Part of a Special Issue:
Organic Synthesis of Carbohydrates

28.
Chemoenzymatic synthesis of C6-modified sugar-nucleotides to probe the GDP mannose dehydrogenase from Pseudomonas aeruginosa
S. Ahmadipour, G. Pergolizzi, M. Rejzek, R. A. Field and G. J. Miller, 
Org. Lett., 2019, 21, 4415-4419.

27.
Gas-liquid flow hydrogenation of nitroarenes: efficient access to a pharmaceutically relevant pyrrolobenzo[1,4]diazepine scaffold 
E. Dimitriou, R. H. Jones, R. G. Pritchard, G. J. Miller* and M. O’Brien*, 
Tetrahedron, 2018, 74, 6795-6803.

26. Recent advances in the enzymatic synthesis of sugar-nucleotides using nucleotidylyltransferases and glycosyltransferases 
S. Ahmadipour, L. Beswick and G. J. Miller, Carbohydr. Res., 2018469, 38-47.

25. Synthesis of 1,3,4,6-tetra-O-acetyl-2-azido-2-deoxy-D-glucopyranose using the diazo-transfer reagent imidazole-1-sulfonyl azide hydrogen sulfate
G. T. Potter, G. C. Jayson, J. M. Gardiner, L. Guazelli and G. J. Miller, 
J. Carb. Chem.201837, 178.

24. Recent advances in the chemical synthesis of sugar-nucleotides 
S. Ahmadipour and G. J. Miller, 
Carbohydr. Res., 2017451, 95-109 (part of a virtual special issue: Eurocarb 2017).

23. 1,2,3,4-Tetra-O-Acetyl-D-mannuronic acid 
L. Beswick and G. J. Miller, Molbank, 20172017, M947.

22. Synthetic Site-Selectively Mono-6-O-Sulfated Heparan Sulfate Dodecasaccharide Shows Anti-Angiogenic Properties In Vitro and Sensitizes Tumors to Cisplatin In Vivo 
E. Avizienyte, C. L. Cole, G. Rushton, G. J. Miller, A. Bugatti, M. Presta, J. M. Gardiner and G. C. Jayson, 
PLoS ONE, 201611, e0159739.

21. Preparation of Methyl 1,2,3,4-tetra-O-acetyl-β-D-glucopyranuronate 
A. Ní Cheallaigh, G. T. Potter, J. M. Gardiner and G. J. Miller, Org. Synth., 201693, 200-209.

20. An Updated Synthesis of the Diazo-Transfer Reagent Imidazole-1-sulfonyl Azide Hydrogen Sulfate 
G.T. Potter, G. C. Jayson, G. J. Miller and J. M. Gardiner, J. Org. Chem., 201681, 3443–3446.

19. Amyl nitrite-mediated conversion of aromatic and heteroaromatic primary amides to carboxylic acids G. T. Potter, G. C. Jayson, G. J. Miller, J. M. Gardiner, Tetrahedron Lett., 201556, 5153-5156.

18. Modular Synthesis of Heparin-Related Tetra-, Hexa- and Octasaccharides with Differential O-6 Protections: Programming for Regiodefined 6-O-Modifications M. Barath, S. U. Hansen, C. E. Dalton, G. C. Jayson, G. J. Miller, J. M. Gardiner, Molecules, 201520, 6167-6180 (part of a special issue: Glycosaminoglycans and their Mimetics).

17. Synthesis of L‐Iduronic Acid Derivatives via [3.2.1] and [2.2.2] L‐Iduronic Lactones from Bulk Glucose-Derived Cyanohydrin Hydrolysis: A Reversible Conformationally Switched Superdisarmed/ Rearmed Lactone Route to Heparin Disaccharides  S. U. Hansen, C. E. Dalton, M. Baráth, G. Kwan, J. Raftery, G. C. Jayson, G. J. Miller, J. M. Gardiner, J. Org. Chem., 201580, 3777-3789.

16. A latent reactive handle for functionalising heparin-like and LMWH deca- and dodecasaccharides  G. J. Miller, K. R. Broberg, C. Rudd, M. R. Helliwell, G. C. Jayson, J. M. Gardiner, Org. Biomol. Chem.2015, 13, 11208-11219.

15. Making the longest sugars: a chemical synthesis of heparin-related [4]n oligosaccharides from 16-mer to 40-mer  S. U. Hansen*, G. J. Miller*, M. J. Cliff, G. C. Jayson, J. M. Gardiner, Chem. Sci.20156, 6158-6164 (Referee recommended Hot Article July 2015)

14. Development of synthetic heparan sulfate oligosaccharides as anti-angiogenic agents G. C. Jayson, S. U. Hansen, G. J. Miller, C. L. Cole, G. Rushton, J. M. Gardiner, E. Avizienyte, Cancer Res., 201575, 1375.

13. Synthetic heparan sulfate dodecasaccharides reveal single sulfation site interconverts CXCL8 and CXCL12 chemokine biology  G. C. Jayson, S. U. Hansen, G. J. Miller, C. L. Cole, G. Rushton, E. Avizienyte, J. M. Gardiner, Chem. Commun., 201551, 13836-13849.

12. The development of anti-angiogenic heparan sulfate oligosaccharides
G. C. Jayson, G. J. Miller, S. U. Hansen, M. Baráth, J. M .Gardiner, E. Avizienyte, 
Biochem. Soc. Trans.201442, 1596-1600.

11. Synthesis of a heparin-related GlcN–IdoA sulfation-site variable disaccharide library and analysis by Raman and ROA spectroscopy
G. J. Miller, S. U. Hansen, M. Baráth, C. Johannessen, E. Blanch, G. C. Jayson, J. M .Gardiner, 
Carbohydr. Res., 2014400, 44-53.

10. Small-Molecule-Induced Clustering of Heparan Sulfate Promotes Cell Adhesiopn  N. Takemoto, T. Suehara, H. Frisco, S.-I. Sato, T. Sezaki, K. Kusamori, Y. Kawazoe, S. M. Park, S. Yamazoe, Y. Mizuhata, R. Inoue, G. J. Miller, S. U. Hansen, G. C. Jayson, J. M. Gardiner, T. Kanaya, N. Tokitoh, K. Ueda, Y. Takakura, N. Kioka, M. Nishikawa, M. Uesugi, J. Am. Chem. Soc.2013135, 11032-11039.  

9. Tetrasaccharide iteration synthesis of a heparin-like dodecasaccharide and radiolabelling for in vivo tissue distribution studies S. U. Hansen*, G. J. Miller*, G. Rushton, E. Avizienyte, C. Cole, G. C. Jayson, J. M. Gardiner, Nature Commun.20134, 2016.

8. Efficient chemical synthesis of heparin-like octa-, deca- and dodecasaccharides and inhibition of FGF2- and VEGF165-mediated endothelial cell functions  G. J. Miller, S. U. Hansen, M. Baráth, G. Rushton, C. Cole, E. Avizienyte, G. C. Jayson, J. M. Gardiner, Chem. Sci., 20134, 3218-3222.

7. First Gram-Scale Synthesis of a Heparin-Related Dodecasaccharide 
S. U. Hansen, G. J. Miller, G. C. Jayson, J. M. Gardiner, Org. Lett.201315, 88-91 (C&EN News Highlight Article: 2012, 90, 17).                               

6. Selection of a Novel Anti-Nicotine Vaccine: Influence of Antigen Design on Antibody Function in Mice  D. C. Pryde, L. H. Jones, D. P. Gervais, D. R. Stead, D. C. Blakemore, M. D. Selby, A. D. Brown, J. W. Coe, M. Badland, D. M. Beal, R. Glen, Y. Wharton, G. J. Miller, P. White, N. Zhang, M. Benoit, K. Robertson, J. R. Merson, H. L. Davis, M. J. McCluskie, PLoS ONE, 201310, e76557.

5. Synthesis and Scalable Conversion of L‐Iduronamides to Heparin- Related Di- and Tetrasaccharides 
S. U. Hansen*, G. J. Miller*, M. Baráth, K. R. Broberg, E. Avizienyte, G. C. Jayson, J. M. Gardiner, J. Org. Chem.201277, 7823-7843.

4. A synthesis of C-glycosidic multivalent mannosides suitable for divergent functionalized conjugation
G. J. Miller, J. M. Gardiner, Tetrahedr. Lett.201152, 3216–3218.

3. Adaptable Synthesis of C-Glycosidic Multivalent Carbohydrates and Succinamide-Linked Derivatization 
G. J. Miller, J. M. Gardiner, Org. Lett.201012, 5262-5265. 

2. Synthesis of the Marine Glycolipid Dioctadecanoyl Discoside 
G. J. Florence, T. Aslam, G. J. Miller, G. D. Milne, S. J. Conway, Synlett., 200919, 3099-3102.
         
1. Biology-enabling inositol phosphates, phosphatidylinositol phosphates and derivatives
S. J. Conway, G. J. Miller, Nat. Prod. Rep., 200724, 687-707.


Preprints

VI. Chemical synthesis of C6-tetrazole D-mannose building blocks and access to a bioisostere of mannuronic acid 1-phosphate
E. Dimitriou and G. J. Miller, Beilstein Archives,
2020

V.
Targeted chemoenzymatic synthesis of sugar nucleotide probes reveal an inhibitor of the GDP-D-mannose dehydrogenase from Pseudomonas aeruginosa
L. Beswick, E. Dimitriou, S. Ahmadipour, A. Zafar, M. Rejzek, J. Reynisson, R. A. Field and G. J. Miller, ChemRxiv, 2020, now published in ACS Chem Biol., 2020, 15, 3086-92

IV.
Heparin inhibits cellular invasion by SARS-CoV-2: structural dependence of the interaction of the surface protein (spike) S1 receptor binding domain with heparin
C. J. Mycroft-West, D. Su, I. Pagani, T. R. Rudd, S. Elli, S. E. Guimond, G. J. Miller, M. C. Z. Meneghetti, H. B. Nader, Y. Li, Q. M. Nunes, P. Procter, N. Mancini, M. Clementi, N. R. Forsyth, J. E. Turnbull, M. Guerrini,* D. G. Fernig,* E. Vicenzi,* E. A. Yates,* M. A. Lima,* and M. A. Skidmore,* bioRxiv
2020, now published in Thromb. Haemost. 2020, 120, 1700-15

III. The 2019 coronavirus (SARS-CoV-2) surface protein (Spike) S1 Receptor Binding Domain undergoes conformational change upon heparin binding
C. J. Mycroft-West, D. Su, S. Elli, S. Guimond, G. J. Miller, J. Turnbull, E. Yates, M. Guerrini, D. Fernig, M. Lima and M. Skidmore, bioRxiv
2020, doi: https://doi.org/10.1101/2020.02.29.971093

II. SARS-CoV-2 Spike S1 Receptor Binding Domain undergoes Conformational Change upon Interaction with Low Molecular Weight Heparins
C. J. Mycroft-West, D. Su, Y. Li, S. E. Guimond, T. R. Rudd, S. Elli, G .J. Miller, Q. M. Nunes, P. Procter, A. Bisio, N. R. Forsyth, J. E. Turnbull, M. Guerrini, D. G. Fernig, E. A. Yates, M. A. Lima, M. A. Skidmore, bioRxiv
2020, doi: https://doi.org/10.1101/2020.04.29.068486

I. Glycosaminoglycans induce conformational change in the SARS-CoV-2 Spike S1 Receptor Binding Domain
C. J. Mycroft-West, D. Su, Y. Li, S. E. Guimond, T. R. Rudd, S. Elli, G .J. Miller, Q. M. Nunes, P. Procter, A. Bisio, N. R. Forsyth, J. E. Turnbull, M. Guerrini, D. G. Fernig, E. A. Yates, M. A. Lima, M. A. Skidmore, bioRxiv
2020, doi: https://doi.org 10.1101/2020.04.29.068767


Book Chapters

vi. M. Singh, M. Watkinson, E. M. Scanlan and G. J. Miller, 2021, Synthetic FRET enabled carbohydrate active enzyme probes. In: Walker, J. M. ed. Methods in Molecular Biology, Springer, in production

v. An alternative synthesis of 3-Azidopropyl 2,4,6-tri-O-benzyl-β-D-galactopyranosyl-(14)-2,3,6-tri-O-benzyl-β-D-glucopyranoside
M. Reihill, A. Ní Cheallaigh, C. M. M. Benckendorff and S. Oscarson,
Carbohydrate Chemistry: Proven Synthetic Methods5, ch. 33, 2020, 281-292, CRC Press.
Procedure verified by C. M. M. Benckendorff in GJM lab.

iv. Synthesis of 1’-(4’-thio-β-D-ribofuranosyl) uracil
M. Guinan, D. Lynch, M. Smith and G. J. Miller,
Carbohydrate Chemistry: Proven Synthetic Methods5, ch. 28, 2020, 237-232, CRC Press.

iii. Synthesis of dibenzyl 2,3,4,6-tetra-O-benzyl-α-D-mannopyranosyl phosphate 
S Ahmadipour, B. Riedl and G. J. Miller, Carbohydrate Chemistry: Proven Synthetic Methods5, ch.17, 2020, 135-140, CRC Press.

ii. Synthesis of allyl-α-(12)-linked mannobioside from a common 1,2-orthoacetate precursor
N, Trattnig, A. NÍ Cheallaigh and P. Kosma,
Carbohydrate Chemistry: Proven Synthetic Methods5, ch. 13, 2020, 99-108, CRC Press.
Procedure verified by A. NÍ Cheallaigh in GJM lab.

i. Synthesis of 1,3,4,6-tetra-O-acetyl-2-azido-2-deoxy-D-glucopyranose using the diazo-transfer reagent imidazole-1-sulfonyl azide hydrogen sulfate 
G. T. Potter, L. Guazelli, G. C. Jayson, G. J. Miller, J. M. Gardiner, Carbohydrate Chemistry: Proven Synthetic Methods4, ch.18, 2017, 151-156, CRC Press.